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Domain-wall free energy of spin-glass models: Numerical method and boundary conditions

Koji Hukushima
Institute for Solid State Physics, University of Tokyo, 7-22-1 Roppongi, Minato-ku, Tokyo 106-8666, Japan
(Received 2 April 1999

An efficient Monte Carlo method is extended to evaluate directly domain-wall free energy for randomly
frustrated spin systems. Using the method, critical phenomena of spin-glass phase transition are investigated in
the 4d=J Ising model under the replica boundary condition. Our values of the critical temperature and
exponent, obtained by finite-size scaling, are in good agreement with those of the standard Monte Carlo and the
series expansion studies. In addition, two exponents, the stiffness exponent and the fractal dimension of the
domain wall, which characterize the ordered phase, are obtained. The latter value is larger fhandicat-
ing that the domain wall is really rough in thel4sing spin-glass phasgS1063-651X99)01810-3

PACS numbs(s): 05.10.Ln, 75.10.Nr, 75.40.Mg

I. INTRODUCTION over the free-energy derivative, measured by MC simula-
tions, along a parameter path between a reference system and
Numerical simulations, in particular, Monte Car®C) the one of interest. As for zero-temperature calculations,
methods, have played a quite important role in spin-glasgarious optimization techniques have been demonstrated to
(SO studies[1]. For example, very large-scale MC simula- be useful for Ising[14,15 and vector spin systemd6].
tions have strongly suggested the existence of a SG phagtese facts restrict so far to rather small sizes and/or at zero
transition in three-dimensional Ising SG systefis-4]. In  temperature. In this paper we have developed a boundary-flip
these studies, a cumulant of SG overlap functipeo called  MC method proposed by Hasenbugdf7], which allows us
the Binder parameter, has frequently been used in order t® estimate the free-energy difference dirite temperature
extract critical temperatur€ .. However, the Binder param- directly from a MC simulation. In applying a naive
eter in I Edwards-Anderson(EA) Ising models[4,5]  boundary-flip MC method to large systems and/or at low
merely depends on system sizes belbwas compared to temperatures, one may encounter a hardly relaxing problem
that aboveT . [6]. Moreover, unusual size dependence of theeven in simple models without many metastable states,
Binder parameter is observed in a short-ranged Ising EAvamely, the system is trapped into a local area in the phase
model under the magnetic fie[d@]. Consequently, the exis- space. The original worklL7] has successfully overcome the
tence of the SG phase transition under the field has still rerelaxational problem by combining the method with the clus-
mained unclear. In order to settle the issue and maker MC dynamics.
progress toward a good understanding of the SG picture, we In the present paper, we have proposed an alternative
consider other numerical analyses to be quite necessary. strategy, which is the boundary-flip method with exchange
In this direction, some promising ways have recently beerMC (EMC) method[18], in order to make the relaxation
proposed based on nonequilibrium dynami8s9] and the faster. This combined method is found to be quite efficient
idea of non-self-averagind.0], but here we pay attention to for randomly frustrated spin systems such as spin glasses,
the domain-wall renormalization-grouDWRG) method  while the original method based on the cluster MC method is
originally proposed by McMillari11]. The DWRG estimates restricted to nonfrustrated systems. The present method is
a singular part of free energy by calculating the domain-wallapplicable to a wide class of spin systems. Moreover, the
free energyAF, which is defined as the free-energy differ- direct measurements have an advantage over the thermody-
ence between periodic and antiperiodic boundary conditionaamic integration method from a numerical standpoint, be-
(BC’s). In the scaling regime at low temperaturéd; fol- cause statistical error is controlled within MC scheme in the
lows a power law as a function of the system sizeAF  former. Consequently, we have succeeded to estimate the
~L* where the stiffness exponefits related to the rigidity ~ free-energy difference in a SG model, accurately enough to
of the system. If the exponertt takes a positive value at a observe systematic correction to finite-size scaling.
temperature, then the system stays in an ordered phase. OnFor applying DWRG to SG systems, we need to choose
the other hand, a negative exponent means a disorderglde relevant boundary conditions to the ordered phase. The
phase. In this sense, the sign of the exporeistan indicator  standard approach has often used a randomly fixed spin-
of the existence of long-range ordering. This exportealso  boundary condition[19]. Instead, we employ the replica
characterizes a low-energy excitation in the SG phase and undary condition proposed by Ozdl@5], in which two
predicted to be smaller thaml £ 1)/2, d being dimensional- real replicas are coupled with each other through a boundary
ity, in the droplet scaling theory12,13. surface. The replica boundary condition provides that the
The DWRG approach relies on an accurate way for estidomain-wall free energy becomes positive at any bond dis-
mating the free-energy difference between two BC's. It is aorder, implying that it conjugates to the SG ordering. This
difficult task in general for a MC method to estimate free positivity is of benefit to us for estimating the domain-wall
energy or entropy. Except for the numerical transfer-matrixiree energy accurately from a numerical point of view.
method for Ising models, it is therefore usual to integrate Here we study the d+J Ising SG model under the rep-
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lica BC by the MC method. We obtain the critical tempera- G
ture and the exponent by a finite-size-scaling analysis of the /;// - \\\
domain-wall free energy, in agreement with the previous A TS
works. In addition, we estimate two exponents, the stiffness o + P
exponentd and the fractal dimensiod of the domain wall. \5\\ ///
We find thatd, is larger thand—1 in the SG phase. ’

This paper is organized as follows: In the next section, we
explain the method for calculating the domain-wall free en- FIG. 1. Typical example for metastable configuration in a fer-
ergy. Section Il is mainly devoted to discussion about theomagnetic model.
replica boundary conditions. We give an interpretation of the

domain wall appearing in the replica boundary condition and Tris.s,.5,)0s,,5,8XH ~ H 1ol 0,51, S,)/T]
propose a way to measure the morphology of the domain  Pe(T)= ZolT)

wall. We show results for application of the method td 4 ot

+J Ising SG model in Sec. IV. In the last section, possible Zp(T)

extensions of the method and nature of the low-temperature = m (4)

phase are discussed. The Appendix contains a way for set-
ting temperature points, which is needed before simulation ijyhere 5 is the Kroneker delta function. This quantity is ac-
the exchange MC method. cessible from a MC simulation, namely, it is nothing but the
probability for realizing the periodic BC during MC simula-
tion in which the boundary spins as well as the bulk spins are
II. BOUNDARY-FLIP MC METHOD updated according to a standard MC procedure. In terms of
WITH EXCHANGE PROCESS the probability and the corresponding one to the antiperiodic
In this section we describe a method that allows us td3C, the domain-wall free energyF we want to investigate
evaluate directly the domain-wall free energy using MCIs given by
simulations. For the sake of simplicity, we restrict ourselves
to Ising spin systems and fixed spin-boundary conditions. Let — a—B(Fp—Fap) —
us consider a total model Hamiltonian defined by expAR(T)]=e

z._pam
Zpp  Pap(T)"

This is the basic idea of the boundary-flip MC method pro-

Hiol 0,51,52) = Himogel 0) + @ Hpc(0,51,S2), (D) posed by Hasenbusdi7]. When we adopt a naive local
updating process for the boundary spins in the boundary-flip
where o denotes lIsing spin variable defined on aMC method, however, we are at once faced with a hardly

d-dimensional hypercubic latticé of LY and two additional  rélaxing problem. For example, once the antiperiodic bound-

spins,S, and$S,, represent boundary spins. The second ternffY conditions and the domain-wall structure in the system

gives a coupling between the model system and the boundaff€ _realized in the simulapion at low temperatures, as shown
spins along one direction as in Fig. 1, the boundary spins are kept to be fixed in the sense

that the probability for flipping these spins is vanishing in
practice. This fact makes statistical errordf significantly
large. The original work17] has overcome this difficulty by
HBC(U’Sl’Sz):_iealV Ji,lgisl_ieazv 429152 2 ilizing the modified cluster flip. We can also practically
solve this so-called hardly relaxing problem using recently
proposed extended ensemble methods such as the multica-
where the summation runs over one surfagé of the lattice  nonical MC method20], the simulated tempering@1], and
V and its opposite surfacgV. A standard periodic boundary the exchange MC method.8]. In fact, a similar difficulty
condition foro is used along the remaining directions. Then,has been overcome using the multicanonical idea in the
the total partition functiorZ ; and the free energy of this  |attice-switch MC methodi22], which has been proposed to
whole system are defined by estimate the free-energy difference between two different
crystalline structures in a hard-sphere system.
_ _ In the present paper, we employ the EMC method in order
2o 1) = a5, 50 ~Hiol 7,51, 5)/T] to obtain an efficient path between two boundary-condition
—ex — Fo(T)/T], 3) states. In the EMC method, We.simulat_e a combined system,
which consists of a noninteracting-replicated system. The
mth replica is simulated independently with its own external
whereT is temperature and we set the Boltzmann constant teariable such as temperature. We introduce an exchange pro-
unity. The phase space of the total Hamiltonian is enlargedess between configurations of two of teeplicas with the
by adding the degree of freedom of the boundary sg@ps whole combined system remaining in equilibrium. One pos-
and S,. When these spins are parallel, the boundary condisible way for obtaining the path is that we distribute various
tion is regarded ageriodic and similarly theantiperiodic  values of the coupling in Eq. (1) ranging from 0 to 1 tdM
boundary condition corresponds to antiparallel boundaryeplicas. A target system we are physically interested in is
spins. For a given temperature the probability for finding thethe replica witha=1. For a replica with null coupling od,
periodic boundary condition is given by which we call a source system, the boundary spins can be
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able. In SG systems, the free-energy difference between
these BC’s cannot be assured positive so that the width of
distribution of the free-energy difference is examined as an
effective coupling of the SG ordering,eq= \/(F ap— F p)°.
To evaluate the mean width is rather difficult as compared
with the average in numerical calculations. Further, it is less
clear how the domain wall is created in a random spin sys-
tem under these BC's.
In order to avoid the difficulty and make clear an idea of
the domain wall, OzeKi25] has proposed a replica boundary
T T T Temperature condition (RBC), in which two real replicas are prepared
0 c m . . . . L .
with the same bond realization. Its essential point is to intro-
FIG. 2. Schematic picture of the exchange line in parameteduce a uniform coupling between these two replicas only for
space. one surface)yV along a given direction. For the other direc-
tions periodic BC is employed as usual. We show explicitly
flipped freely. Therefore, the path between differentan example expressed as the Ising Hamiltonian,
boundary-condition states in the target system would be re-
covered by the exchange process through the source system.
In randomly frustrated spin systems such as SG models, _
there is another serious relaxation problem arising from bulk /tmodel 07)= —% Jij(oioi7i7) = Jint EE(.,OV TiTis
spins in the model system itself. This problem can be over- (7)
come also by the EMC methoflL8] When we distributevi
temperature points widely including high enough tempera-
ture in a disordered phase, configurations at low temperawhere botho and 7 are Ising variables and the summation of
tures are expected to be refreshed through the exchange pithe first term runs over nearest-neighbor bonds. The second
cess. The EMC method has turned out to work efficiently interm corresponds to the replica interaction mentioned above.
the SG systemil 8,23. Therefore, for the boundary-flip MC When J;,; is set to(anti-) ferromagnetic, the boundary con-
method on SG models, we need to construct the EMdition is called replica(anti-) periodic BGRAPBQ). Spins
method in two-dimensional parameter space of the couplingn the opposite side ofyV are kept randomly fixed with
a and the temperatur€&. It is possible to introduce the ex- oj=r1;.
change process in the two parameter space, but it is quite Ferromagnetic interactions between the replicas in the
time consuming. In the present paper, therefore, we chood@PBC prefer aself-overlap stateeven if the system has
an exchange line in the two-dimensional space appropriatelynany local minima or pure states. Namely, one replica gives
namely, we set a system at high temperature with0 as  an effective conjugated field to the other replica through the
one end of the exchange line and systems at lower temperépterreplica interaction. It is convenient to consider the do-
ture with « being unity, as shown in Fig. 2. It is noted that main wall in terms of the replica overlap=o;7; . The self-
the parameter region of the our final interest lies on the lineverlap state is characterized by positive valuesy;cét all
with @=1 aroundT. and below. An efficient choice of the the sites, meaning no domain wall in the system. At sites on
exchange line would depend on systems we want to investthe opposite surfaces afyV, q; take unity by definition,
gate. Actual implementation to the Ising spin-glass modelrrespective of RAPBC’s. On the other hand, antiferromag-

coupling o

will be explained in detail in Sec. IV. netic intercouplings between the replicas in the RAPBC
would induce negative overlap at sites near the coupling.
Ill. REPLICA BOUNDARY CONDITIONS T.herefore, at Ieas_t one domain WaII,_characterlzed .by a re-

FOR SG SYSTEMS gion where the sign ofy; changes, likely appears in the

RAPBC, if the system has a rigid ordered state. From a
In this section, we discuss how to choose a boundarynathematical point of view, non-negativity of the free-
condition for SG systems in the DWRG study. We concen-energy differenceA Fr=Fgapsc— Frpac Under the replica
trate on a way of choice of a boundary condition along oneBC has been proven rigorously in any random Ising model at
direction while the remaining ones are considered to beny finite temperature using the transfer-matrix formalism
given appropriately. In conventional DWRG stud[d@4,24  [25]. This non-negativity holds true irrespectively of a choice
as well as the defect energy method, a boundary conditioof spins on the surface oppositedgV. As a result, only the
frequently used is a connected spin BC in which the correaverage of the domain-wall free energy is needed for esti-
sponding boundary term in EqL) is described by mating a relevant effective coupling of the SG ordering. This
is advantageous for reducing the statistical errorAdfg
B from which a transition point from paramagnetic to SG phase
HBC_ieal\;je oV Jijoioy. © s detected.
An additional merit of the replica boundary condition is
The case withe/|e|=1(—1) is regarded as th@nti-) peri- ~ that we can discuss the morphology of the domain wall at
odic boundary condition. For the boundary condition definedinite temperatures. In terms of the local overtgp the area
by Eq. (6), the boundary-flip MC method can be applied by ©f the domain boundary mentioned above is expressed as
treating the sign of the coupling as a MC dynamical vari- W=E<ij>%(1—qiqj), where the summation is over nearest-
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neighboring pairs. Then we can extract directly domain-wall
properties such as its fractal dimension, from the difference
AW(T) defined by

1
AW(T)= > > ({0107 7))rPeC (Ti 0 Ti T} )RAPEO) »

Py

n' 3 T
F 7 £ 4 af -
.3 I

0y
® E:
where(: - -)rapac denotes the thermal average under the rep- a’f
lica (anti-) periodic BC. This quantity is also regarded as a i

BAF
A b U AEA o, N wis Lo
g

difference of link correlation26] between two boundary . . . . .
conditions in+J models. The correlation function as well as 0 50000 100000 tlf%g] 200000 250000 300000

the replica overlap have been studied in a similar replicated

system[26], which has a global coupling between the repli-  FIG. 3. The domain-wall free energy of thel#J Ising SG

cas. This coupled system is different from the present systemnodel withL=8 andT=1.694 well below the SG transition tem-
under RBC. In particular, correlation functidB) is related perature as a function of MC steps. The upper data marked by open
to domain-wall properties only in the RBC. The domain-wall triangles are started from the periodic boundary condition for the
areaAW has not been directly studied so far in SG systemsywhole system, while the lower one, from the antiperiodic one. Each
except for the zero-temperature calculation in a two-point at timet is obtained by averaging over 2000 MCS around
dimensional Ising SG mod¢B2]. We will present new re- and error bars are estimated from statistical fluctuation over ten
sults forAW in the next section. samples.

IV. RESULTS differenceAFp is estimated as a function of a MC stepy
averaging over short MC steps around timén the case of

In this section, we present results of an application of théh® whole antiperiodic BC, free-energy difference, starting

MC method explained in the previous sections to thk 4 from a large negative value at the initial time, evolves toward
+J Ising SG model. The interactions);;} in Eq. (7) are equilibrium. The other estimation with the periodic BC at the

initial time reaches the equilibrium value from the opposite

ability. The boundary-flip MC method can be applied to thedirection to t_hat of_ the antiperiodic BC. In equilibrium, two
replica BC by regarding the sign of the interactiby in Eq. ~ CUTVes commdeT .W|th.each other. As e>§pected, we see in Fig.
(7) as a dynamical variable. Equivalently these boundary?_’ that the equilibration ofAF is obtalned_ after a C_ertam
conditions are defined by relative direction of the boundaryiMme- It should be noted that the relaxational function ap-

spinsS, andS, added to Eq(7) whosed ,; are fixed to be proaching the equilibrium value follows an exponential law
positive. Then, the boundary part in Ed) is given by rather than a power law observed in the standard SG simu-

lations. This implies the existence of a typical time scale for
equilibration in the present method. We thus expect that the
Hoc(0.7,51,.S) =~ 2 J(0i$1+ 7Sy, (9 system really reaches equilibrium after a few times of such
iedV . . . .
time scale. We estimated the time scale for other sizes and
determined the MC ste®1CS) for thermalization and mea-
surements. For example, in simulations of thi ease with
L=8, we take 9.& 10" MCS for the initial step and 2.0
32 irrespectively of the system sizes to utilize the multispin™ 10° MCS for measurement. We have also checked that the
coding technique. Each replica with the parametemnd T~ ergodic time[20,18 is about 3<10%, 3.0x10%, 5.8x 10",
tries to exchange configuration with the nearest replica in th@nd 1.7 10° MCS on average foc =4, 6, 8, and 10, respec-
parameter space. As we have explained in Sec. Il, we choodively-
in this two-parameter space, a line on whidhreplicas are We show temperature dependence Adf for the 4d

prepared. The line chosen is such that the value funity ~ !Sing SG model in Fig. 4. The lattice size studied are
below a certain temperatur€,,, but it decreases like a =% 6,8, and 10 with samples 2197, 2060, 1332, and 892,

Gaussian formula as a function @fT,, aboveT,,. The respectively. Accor_ding to the standard finite-size-scaling ar-
onsetT,, is set to be about two times the critical temperature 9Ument, the domain-wall free energy should be scaled as
We distribute the set of the parameters to the 32 replicas

such that the acceptance ratio for each exchange process be- AFR(L,T)~Fo((T-ToLY), (10
comes independent of the replicas. This can be succeeded by

a simple iteration method using the energy function, which isvhere the parameter denotes the critical exponent of the
estimated from a short preliminary run. Details of the itera-correlation length ané is a scaling function. Therefore, the
tion method is explained in the Appendix. critical temperature can be located at the point whieFeg,

As an equilibration check, we study time evolution of for different sizes as a function @f cross with each other.
AF g starting from two initial conditions: periodic and anti- The crossing feature dfFy at T is common to the Binder
periodic boundary conditions imposed for the whole repli-parameter. In fact, as shown in Fig. 4, crossingAdéfy of
cated systems in the EMC simulation. The initial conditionstwo different sizes is seen at a certain temperature. However,
for the bulk spins are chosen at random. The free-energthe crossing temperature is found to shift systematically to

random variables, which take values) with equal prob-

where the interaction$ are also distributed randomly. In the
present paper we adopt this method with the boundary spin
The number of replicad in the EMC method is fixed at
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FIG. 4. Iemperature dependence of the domain-wall free energy ¢\ ¢ Finjte-size scaling plot of the domain-wall free energy in
for the 4d = J Ising SG model near the critical temperature. Thesey,q o ferromagnetic Ising model. The parameters of the scaling are
lines are for a guide to the eyes. estimated as followst ., =4.51174), v=0.6247). Theasymptotic

. o . behavior of the scaling function follows a power law as a function
the low-temperature side as the system size increases, implyt the scaling parametel T,)L " with slope 1.271). Thevalue

ing that correction to the finite-size scaling is significant. Weot the slope is compatible with the low-temperature behavior,
consider correction due to the leading irrelevant scaling varinamely, 9» being 9=d—1.

able whose scaling dimension dg
Gaussian distributiof81]. Since the system sizes used in the
AFR(L, T)~Fo((T=ToL*)+ L™ “F((T-ToL™). present paper are larger than those in the previous MC simu-
(1) Jations, we expect that our estimation is reliable. The irrel-

o evant exponentv is, to our knowledge, the first estimation
These exponents andw and the critical temperatufk; are oy 5 44 Ising SG model by MC simulation, but its value is
determined Dy fitting the simulated data to scaling formulagjightly lower than that obtained from the series expansion
(11), where the scaling functiors, andF, are assumed to [30], which quoted about 3.

pe given by third-order polynomial functions. From the fit- = At |ow enough temperature, the domain-wall free energy
ting, we estimatel .=2.004), »=0.926), ando=1.5(9). g expected to be scaled as
The finite-size scaling of, after subtraction of the leading

correction is plotted in Fig. 5, where all the data points are AFgR(L,T)~L", (12)
found to collapse almost into a universal function. The scal-

ing plot including the smallest size=4 is obtained only where ¢ is an exponent, which gives the characteristic en-
when the leading term of the correction is taken into accountergy scald.? of low-energy excitations of typical side We
The estimated critical temperature is consistent with the Précannot eva|uat@FR at low temperatures enough to distin-
vious results obtained by the MC meth¢27,28 and the  guish the low-temperature properties from the critical behav-
high temperature expansi¢29,30. Our result forv is also  jor. Here we try to estimate the exponehfrom the scaling

in agreement with these expansion studies, and not very difynction of AFg. We assume that the behavior dF g at a
ferent with that obtained by MC simulations farJ [27] and  |arge length scale is also described by the scaling form of Eq.
(11) near belowT.. This assumption implies that the
asymptotic behavior of the scaling functiér, is predicted

as

10
Fo(x)~|x|?, (13

at x— —o. We examine this scaling idea in the simpld 3
Ising ferromagnetic model, where the stiffness exponent co-
incides with the surface dimensiods-1. We estimate the
domain-wall free energy by the present MC method under
the connected spin BC described in E@). In the 3 Ising
model, we scale the data to the leading scaling forngL
without the correction, because we have not observed a shift
of the crossing temperature under our numerical accuracy.
FIG. 5. Finite-size scaling plot of the domain-wall free energy in The finite-size Sca,“ng _Of the domain-wall f,ree ener_gy works
the 4d+J Ising SG model. The leading correction to the scaling isWe!l @s observed in Fig. 6. The asymptotic behavior of the
taken into account. The scaling plot after subtraction of the leadingc@ling function givesyv~1.27, compatible with the well-
correction is shown. The estimated scaling parametersTare Known values ofy and =d—1.
=2.004), »=0.926), and therrelevant exponenb=1.5(9). The Let us turn to the d Ising SG model. The stiffness expo-
slope of the scaling function is asymptotically close to (175 nenté in SG systems is expected to be much smaller than
meaning that the stiffness exponehts 0.826). that of the ferromagnetic model. The droplet theory predicted

Fy

0.1

0.1 1
(T=T )L
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V. DISCUSSION AND SUMMARY

It = .'.v" We have developed a numerical method, which enable us
1p L=8 e !_..-*' 3 to estimate a free-energy difference directly from MC simu-
e v" lation. It is a boundary-flip MC method, in which the replica
" o va boundary conditions and the exchange MC technique are in-

‘a corporated. The proposed method works well in the short-

Wol 2
4
[ )

range Ising SG model. This method presented here can be
applied to various spin systems including vector spin models
“ because our argument does not depend on a model Hamil-
- tonian. It should be noted that the EMC method, as well as
other extended ensemble methods, is also applicable to ran-
domly frustrated spin systems, while the cluster-flip-based
FIG. 7. Finite-size scaling plot of the domain-wall area in the method is restricted in nonfrustrated models. Another exten-
4d+J Ising SG model after subtraction of the leading correction toSION would be concerned with the choice of the boundary
the scaling. The critical temperature is used as a result of the scalingenditions. In this paper, we have described the case for the
analysis for the domain-wall free energy. The exponeig found  fixed spin BC, but it is straightforward to extend it to other
to be 0.942), consistent with the previous estimation. The esti- types of BC’s. It is only necessary for boundary conditions to
mated irrelevant exponeni=1.86(77) agrees with that obtained be expressed by a countable variable, while the degree of
from the AFg scaling. The slope is estimated to be B4 sug-  freedom of the model system is not restricted.
gestingds=3.132). We also discuss boundary conditions for SG systems. Let
us comment on related studies. A similar coupled-replica
the upper bound of to be d—1)/2[13]. We extract value system has been studied analytically by a mean-field varia-
of # from the scaling function obtained in Fig. 5. We fit the tional method 36], where two replicas are coupled with each
scaled data with the scaling variabkelarger than 3 to a other by fixing the value of overlap between surface spins of
power law. The best fit is obtained with the exponeémt these replicas. The system studied roughly corresponds to the
=0.751), which yields the stiffness exponent of  present replica boundary model by choosing appropriate pa-
=0.826). rameters. It is predicted that an excess free energy due to the
We also investigate the domain-wall ar&&V defined by  effective coupling is proportional th®~>?2 which acciden-
Eqg. (8) in this model, which is easily calculated in the tally coincides with the upper limit of the droplet scaling
present MC scheme. A scaling analysis similar to the one fotheory in the four-dimensional case. Our estimation of the
AFR is performed forAW, taking into account the leading stiffness exponent is not compatible to that predicted from
correction to the scaling. It is noted that in contrast with thethe variational calculation.
AFg scaling,AW is proportional toL?” nearT, because it Recently a boundary condition, called the naive boundary
has essentially the same scaling dimension as the energgondition, has been proposed in 2D Isif8y] and XY [38]
energy correlation function. The finite-size scaling plot forspin-glass models, independently. In these studies, they
AW is shown in Fig. 7, where the critical temperature isminimize energy of a whole system under the free-boundary
used, which is estimated by th®Fg scaling. The scaling condition. Using the obtained boundary spin configuration as
works nicely both above and beloW. and the estimatedt @ reference system, a twisted boundary condition is prepared
value is consistent with that froldF 5. We suppose that at bY flipping the sign of spins on one surface. The ground-state
low temperature the domain wall in the SG system is ratheenergy of such a system is always higher than that of the
rough. Correspondingly, the domain-wall arddV is ex- reference system. They claimed that this non-negativity is
pected to follow a power law on size with a nontrivial fractal €vidence of introducing correctly a domain wall into the sys-
dimensionds_ We estimatms by extracting the asymptotic tem. It is doubtful whether such boundary conditions defined
behavior of the scaling function @fW in the same way as in at zero temperature are also relevant to the ordering at fin.ite
the analysis ofAFg. The asymptotic slope of the scaling temperatures. This is because many SG systems including
function isdsv— 2. The fractal dimension of this model is Poth short-rangd32] and mean-field model39] are ex-
found to be 3.1@). According to the Bray-Moore scaling pected to exhibit chaotic nature; namely, spin configurations

law [32], the exponents) and d are related to the chaos at finite temperatures differ from those @t&=0 in larger
exponentz, scale than the so-called overlap length. Further, the replica

boundary condition takes an advantage from the naive one in
a practical sense, because the former does not need the
dg ground-state calculations. This fact makes our investigations
{= 2 0. (14) easier in three- or high-dimensional systems, where the
ground states are hardly found for suitable large systems due
to NP hardness.
By this combined with the values @f anddg obtained here, The present method has successfully been applied to the
our estimation of{ is 0.756). This value is smaller than 4d=J Ising SG model under the replica boundary condi-
those of MC simulations ford Ising SG model$33,34], but  tions. The average of the domain-wall free eneAdyg over
rather close to that by the Migdal-Kadanoff renormalization-samples, not the variance as used in the standard DWRG
group analysi$35]. study, exhibits very clear crossing at the critical temperature,

0.1 _ - ,,‘.,.,,4.,“',‘ 'x

0.1 1
(=T )L™
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0.9 - - - - - - - the possibility that there are many pure states.
08 | S T In conclusion, we have proposed a MC method that en-
07 UL ables us to estimate the free-energy difference, and have suc-
o | cessfully applied it to the d=J Ising SG model. Our value

’ of T is in good agreement with the previous results obtained
0.5 4 from the numerical simulations and the series expansions.
04 ¢ We have presented estimates of two exponents, the stiffness
03 exponent and the fractal dimension. We have also found that
oa | low-lying excitations as expected in the droplet theory are
i realized within one pure state in the SG phase, though we
0

P(AFR)[AFR],

cannot rule out the possibility that there exist many pure
states.

0 0.5 1 1.5 2.5 3 3.5 4

2
AFAFR) s
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works well even in the case where the Binder parameter does

not show a crossing at;. In such systems, the short-range

SG models with the field are one of the most attractive prob- APPENDIX: SETTING TEMPERATURE POINTS
lems in the SG study. As a byproduct of the RBC, we can FOR THE EXCHANGE MC METHOD

argue the domain-wall area in the SG phase. We have esti- |n this appendix we propose a practical way to determine
mated the stiffness exponefitand the surface dimensiah  temperature set, which is needed in the exchange MC
of the domain wall in the d Ising SG phase independently. method. For simplicity, we consider a procedure for setting a
The Iatter Value |ieS Signiﬁcantly above the triVial Surfacetemperature poinwn between two fixed Onesﬁn71 and
dimensiond—1, meaning that the domain wall is rough, g .. Our criterion is that acceptance probabilities for the
while both § andd; coincide withd—1 in the ferromagnetic  exchange trial with both neighboring temperatures become

|Sing models. equa|:
Finally we make a comment on distribution & over
samplesP(AFR), whose typical results are shown in Fig. 8. (Bn-1—B)IE(Bn-1)—E(B,)]=C,
To our surprise, the distribution functions of different sizes,
when scaled by their first moment, lie on top of each other in (Bn— B+ VIE(Br) —E(Bnhi1)]1=C, (A1)

the SG phase. Another remarkable observation is that the
scaling function is approximated by a Gaussian functionwhereC and 3, are unknown constants. A formal solution
namely, it approaches a nonzero value as its argument go&¥ B, is given by
to zero. These results, similar to those observediimad 3
Ising SG models at zero temperatig,40, are consistent Bn=9(Bn)
with the droplet pictur¢12,13.

The question of whether many equilibrium pure states ex- = X[ Bn-1E(Bn-1)
ist or not in the SG phase has still remained controversial. E(Bn-1) —E(Bn+1)
For the system of present interest, some MC studiés26| — B tEBrs ) —E(By) (Bu1—Busn)]. (A2)
have supported the existence of the multiple pure states, AT e AP Pl
namely, the mean-field picture, while the Migdal-Kadanoff Regardings’ = g(B) as a map of3 to 8’, we find a fixed
approximation for the short-range SG model2] has point of period 2 with B,.1=9(8,-1) and B, 1
claimed that the asymptotic size scale to detect the correct g(g. . ). Therefore, we expect a repulsive fixed point be-

thermodynamic properties is far from those investigated inyween g, , and 3,.,. A new mapping to obtain the fixed
the MC simulations. As mentioned in Sec. Ill, the replica BCygint is given by

used in the present paper prefers a self-overlap configuration

in the two replicas. Correspondingly, under the replica anti- Ba(t+1)=3[Bn(t) +9(Bn()], (A3)
periodic BC, there likely appear such configurations with a

domain wall, which lies in one of the two replicas and sepawheret is the iteration step. This iteration scheme can be
rates one configuration from its time-reversal one. Thereforeextended straightforwardly to the case of multiple tempera-
our results mentioned above strongly suggest that nature dfire points. The whole set of temperature is divided into two
low-lying excitations within one pure state is as expected ingroups with evem and oddn. Using the iteration scheme,
the droplet theory. Our data alone, however, cannot excludeemperature points of the one group are updated with the
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other group fixed, alternatively. In actual iterations, the ini-points, when it is applied to systems such as spin glasses,
tial temperature point$3,} are set in a suitable way, for With nondiyerging specific heat at t_he phase transition. This
example, equidistans. The energyE(8) at the initial set of ~fact that it is not necessary to specify any parameters before
B is roughly estimated by short MC simulation and the en-Man simulation is, in fact, one of the big advantages of the

ergy at any temperature betwegpand 3, is assumed to be EMC method against the other extended ensemble methods
9y y P n M . .~ such as the multicanonical MC method and simulated tem-
obtained from the MC data, for example, by interpolation

. . / , - 'pering method. Nevertheless, we emphasize that little effort

technique. The convergence of the iteration is rapidlyon preparing the temperature points by pre-MC runs follow-

achieved in many systems we have investigated. ing the prescription described above ensures the acceptance
From our experiences so far, efficiency of the EMCratio almost independent of temperature and so is quite use-

method is rather insensitive for the choice of temperaturdul.
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