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Domain-wall free energy of spin-glass models: Numerical method and boundary conditions

Koji Hukushima
Institute for Solid State Physics, University of Tokyo, 7-22-1 Roppongi, Minato-ku, Tokyo 106-8666, Japan

~Received 2 April 1999!

An efficient Monte Carlo method is extended to evaluate directly domain-wall free energy for randomly
frustrated spin systems. Using the method, critical phenomena of spin-glass phase transition are investigated in
the 4d6J Ising model under the replica boundary condition. Our values of the critical temperature and
exponent, obtained by finite-size scaling, are in good agreement with those of the standard Monte Carlo and the
series expansion studies. In addition, two exponents, the stiffness exponent and the fractal dimension of the
domain wall, which characterize the ordered phase, are obtained. The latter value is larger thand21, indicat-
ing that the domain wall is really rough in the 4d Ising spin-glass phase.@S1063-651X~99!01810-3#

PACS number~s!: 05.10.Ln, 75.10.Nr, 75.40.Mg
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I. INTRODUCTION

Numerical simulations, in particular, Monte Carlo~MC!
methods, have played a quite important role in spin-gl
~SG! studies@1#. For example, very large-scale MC simul
tions have strongly suggested the existence of a SG p
transition in three-dimensional Ising SG systems@2–4#. In
these studies, a cumulant of SG overlap functionq, so called
the Binder parameter, has frequently been used in orde
extract critical temperatureT c . However, the Binder param
eter in 3d Edwards-Anderson~EA! Ising models @4,5#
merely depends on system sizes belowTc as compared to
that aboveT c @6#. Moreover, unusual size dependence of
Binder parameter is observed in a short-ranged Ising
model under the magnetic field@7#. Consequently, the exis
tence of the SG phase transition under the field has still
mained unclear. In order to settle the issue and m
progress toward a good understanding of the SG picture
consider other numerical analyses to be quite necessary

In this direction, some promising ways have recently be
proposed based on nonequilibrium dynamics@8,9# and the
idea of non-self-averaging@10#, but here we pay attention t
the domain-wall renormalization-group~DWRG! method
originally proposed by McMillan@11#. The DWRG estimates
a singular part of free energy by calculating the domain-w
free energy,DF, which is defined as the free-energy diffe
ence between periodic and antiperiodic boundary conditi
~BC’s!. In the scaling regime at low temperatures,DF fol-
lows a power law as a function of the system sizeL, DF
;Lu, where the stiffness exponentu is related to the rigidity
of the system. If the exponentu takes a positive value at
temperature, then the system stays in an ordered phase
the other hand, a negative exponent means a disord
phase. In this sense, the sign of the exponentu is an indicator
of the existence of long-range ordering. This exponentu also
characterizes a low-energy excitation in the SG phase an
predicted to be smaller than (d21)/2, d being dimensional-
ity, in the droplet scaling theory@12,13#.

The DWRG approach relies on an accurate way for e
mating the free-energy difference between two BC’s. It i
difficult task in general for a MC method to estimate fr
energy or entropy. Except for the numerical transfer-ma
method for Ising models, it is therefore usual to integr
PRE 601063-651X/99/60~4!/3606~8!/$15.00
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over the free-energy derivative, measured by MC simu
tions, along a parameter path between a reference system
the one of interest. As for zero-temperature calculatio
various optimization techniques have been demonstrate
be useful for Ising@14,15# and vector spin systems@16#.
These facts restrict so far to rather small sizes and/or at
temperature. In this paper we have developed a boundary
MC method proposed by Hasenbusch@17#, which allows us
to estimate the free-energy difference at afinite temperature
directly from a MC simulation. In applying a naiv
boundary-flip MC method to large systems and/or at l
temperatures, one may encounter a hardly relaxing prob
even in simple models without many metastable sta
namely, the system is trapped into a local area in the ph
space. The original work@17# has successfully overcome th
relaxational problem by combining the method with the clu
ter MC dynamics.

In the present paper, we have proposed an alterna
strategy, which is the boundary-flip method with exchan
MC ~EMC! method @18#, in order to make the relaxation
faster. This combined method is found to be quite efficie
for randomly frustrated spin systems such as spin glas
while the original method based on the cluster MC method
restricted to nonfrustrated systems. The present metho
applicable to a wide class of spin systems. Moreover,
direct measurements have an advantage over the therm
namic integration method from a numerical standpoint,
cause statistical error is controlled within MC scheme in
former. Consequently, we have succeeded to estimate
free-energy difference in a SG model, accurately enough
observe systematic correction to finite-size scaling.

For applying DWRG to SG systems, we need to choo
the relevant boundary conditions to the ordered phase.
standard approach has often used a randomly fixed s
boundary condition@19#. Instead, we employ the replic
boundary condition proposed by Ozeki@25#, in which two
real replicas are coupled with each other through a bound
surface. The replica boundary condition provides that
domain-wall free energy becomes positive at any bond
order, implying that it conjugates to the SG ordering. Th
positivity is of benefit to us for estimating the domain-wa
free energy accurately from a numerical point of view.

Here we study the 4d6J Ising SG model under the rep
3606 © 1999 The American Physical Society
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PRE 60 3607DOMAIN-WALL FREE ENERGY OF SPIN-GLASS . . .
lica BC by the MC method. We obtain the critical temper
ture and the exponent by a finite-size-scaling analysis of
domain-wall free energy, in agreement with the previo
works. In addition, we estimate two exponents, the stiffn
exponentu and the fractal dimensionds of the domain wall.
We find thatds is larger thand21 in the SG phase.

This paper is organized as follows: In the next section,
explain the method for calculating the domain-wall free e
ergy. Section III is mainly devoted to discussion about
replica boundary conditions. We give an interpretation of
domain wall appearing in the replica boundary condition a
propose a way to measure the morphology of the dom
wall. We show results for application of the method to 4d
6J Ising SG model in Sec. IV. In the last section, possib
extensions of the method and nature of the low-tempera
phase are discussed. The Appendix contains a way for
ting temperature points, which is needed before simulatio
the exchange MC method.

II. BOUNDARY-FLIP MC METHOD
WITH EXCHANGE PROCESS

In this section we describe a method that allows us
evaluate directly the domain-wall free energy using M
simulations. For the sake of simplicity, we restrict ourselv
to Ising spin systems and fixed spin-boundary conditions.
us consider a total model Hamiltonian defined by

Htot~s,S1 ,S2!5Hmodel~s!1aHBC~s,S1 ,S2!, ~1!

where s denotes Ising spin variable defined on
d-dimensional hypercubic latticeV of Ld and two additional
spins,S1 andS2, represent boundary spins. The second te
gives a coupling between the model system and the boun
spins along one direction as

HBC~s,S1 ,S2!52 (
i P]1V

Ji ,1s iS12 (
i e]2V

Ji ,2s iS2, ~2!

where the summation runs over one surface]1V of the lattice
V and its opposite surface]2V. A standard periodic boundar
condition fors is used along the remaining directions. The
the total partition functionZtot and the free energyF tot of this
whole system are defined by

Ztot~T!5 Tr$s,S1 ,S2%exp@2H tot~s,S1 ,S2!/T#

5exp@2F tot~T!/T#, ~3!

whereT is temperature and we set the Boltzmann constan
unity. The phase space of the total Hamiltonian is enlar
by adding the degree of freedom of the boundary spinsS1
and S2. When these spins are parallel, the boundary con
tion is regarded asperiodic and similarly theantiperiodic
boundary condition corresponds to antiparallel bound
spins. For a given temperature the probability for finding
periodic boundary condition is given by
-
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PP~T![
Tr$s,S1 ,S2%dS1 ,S2

exp@2H tot~s,S1 ,S2!/T#

Ztot~T!

5
ZP~T!

Ztot~T!
, ~4!

whered is the Kroneker delta function. This quantity is a
cessible from a MC simulation, namely, it is nothing but t
probability for realizing the periodic BC during MC simula
tion in which the boundary spins as well as the bulk spins
updated according to a standard MC procedure. In term
the probability and the corresponding one to the antiperio
BC, the domain-wall free energyDF we want to investigate
is given by

exp@bDF~T!#5e2b(FP2FAP)5
ZP

ZAP
5

PP~T!

PAP~T!
. ~5!

This is the basic idea of the boundary-flip MC method p
posed by Hasenbusch@17#. When we adopt a naive loca
updating process for the boundary spins in the boundary
MC method, however, we are at once faced with a har
relaxing problem. For example, once the antiperiodic bou
ary conditions and the domain-wall structure in the syst
are realized in the simulation at low temperatures, as sho
in Fig. 1, the boundary spins are kept to be fixed in the se
that the probability for flipping these spins is vanishing
practice. This fact makes statistical error ofDF significantly
large. The original work@17# has overcome this difficulty by
utilizing the modified cluster flip. We can also practical
solve this so-called hardly relaxing problem using recen
proposed extended ensemble methods such as the mu
nonical MC method@20#, the simulated tempering@21#, and
the exchange MC method@18#. In fact, a similar difficulty
has been overcome using the multicanonical idea in
lattice-switch MC method@22#, which has been proposed t
estimate the free-energy difference between two differ
crystalline structures in a hard-sphere system.

In the present paper, we employ the EMC method in or
to obtain an efficient path between two boundary-condit
states. In the EMC method, we simulate a combined syst
which consists of a noninteractingM-replicated system. The
mth replica is simulated independently with its own extern
variable such as temperature. We introduce an exchange
cess between configurations of two of theM replicas with the
whole combined system remaining in equilibrium. One po
sible way for obtaining the path is that we distribute vario
values of the couplinga in Eq. ~1! ranging from 0 to 1 toM
replicas. A target system we are physically interested in
the replica witha51. For a replica with null coupling ofa,
which we call a source system, the boundary spins can

FIG. 1. Typical example for metastable configuration in a f
romagnetic model.
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3608 PRE 60KOJI HUKUSHIMA
flipped freely. Therefore, the path between differe
boundary-condition states in the target system would be
covered by the exchange process through the source sys

In randomly frustrated spin systems such as SG mod
there is another serious relaxation problem arising from b
spins in the model system itself. This problem can be ov
come also by the EMC method.@18# When we distributeM
temperature points widely including high enough tempe
ture in a disordered phase, configurations at low temp
tures are expected to be refreshed through the exchange
cess. The EMC method has turned out to work efficiently
the SG systems@18,23#. Therefore, for the boundary-flip MC
method on SG models, we need to construct the E
method in two-dimensional parameter space of the coup
a and the temperatureT. It is possible to introduce the ex
change process in the two parameter space, but it is q
time consuming. In the present paper, therefore, we cho
an exchange line in the two-dimensional space appropria
namely, we set a system at high temperature witha50 as
one end of the exchange line and systems at lower temp
ture with a being unity, as shown in Fig. 2. It is noted th
the parameter region of the our final interest lies on the
with a51 aroundTc and below. An efficient choice of the
exchange line would depend on systems we want to inve
gate. Actual implementation to the Ising spin-glass mo
will be explained in detail in Sec. IV.

III. REPLICA BOUNDARY CONDITIONS
FOR SG SYSTEMS

In this section, we discuss how to choose a bound
condition for SG systems in the DWRG study. We conce
trate on a way of choice of a boundary condition along o
direction while the remaining ones are considered to
given appropriately. In conventional DWRG studies@11,24#
as well as the defect energy method, a boundary condi
frequently used is a connected spin BC in which the co
sponding boundary term in Eq.~1! is described by

HBC5 (
i P]1V, j P]2V

Ji j s is j . ~6!

The case witha/uau51(21) is regarded as the~anti-! peri-
odic boundary condition. For the boundary condition defin
by Eq. ~6!, the boundary-flip MC method can be applied
treating the sign of the couplinga as a MC dynamical vari-

FIG. 2. Schematic picture of the exchange line in parame
space.
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able. In SG systems, the free-energy difference betw
these BC’s cannot be assured positive so that the width
distribution of the free-energy difference is examined as
effective coupling of the SG ordering,Feff5A(F AP2F P)

2.
To evaluate the mean width is rather difficult as compa
with the average in numerical calculations. Further, it is le
clear how the domain wall is created in a random spin s
tem under these BC’s.

In order to avoid the difficulty and make clear an idea
the domain wall, Ozeki@25# has proposed a replica bounda
condition ~RBC!, in which two real replicas are prepare
with the same bond realization. Its essential point is to int
duce a uniform coupling between these two replicas only
one surface]0V along a given direction. For the other dire
tions periodic BC is employed as usual. We show explici
an example expressed as the Ising Hamiltonian,

Hmodel~s,t!52(̂
i j &

Ji j ~s is j1t it j !2Jint (
i P]0V

s it i ,

~7!

where boths andt are Ising variables and the summation
the first term runs over nearest-neighbor bonds. The sec
term corresponds to the replica interaction mentioned abo
WhenJint is set to~anti-! ferromagnetic, the boundary con
dition is called replica~anti-! periodic BC~RAPBC!. Spins
on the opposite side of]0V are kept randomly fixed with
s i5t i .

Ferromagnetic interactions between the replicas in
RPBC prefer aself-overlap state, even if the system has
many local minima or pure states. Namely, one replica gi
an effective conjugated field to the other replica through
interreplica interaction. It is convenient to consider the d
main wall in terms of the replica overlapqi5s it i . The self-
overlap state is characterized by positive values ofqi at all
the sites, meaning no domain wall in the system. At sites
the opposite surfaces of]0V, qi take unity by definition,
irrespective of RAPBC’s. On the other hand, antiferroma
netic intercouplings between the replicas in the RAPB
would induce negative overlap at sites near the coupli
Therefore, at least one domain wall, characterized by a
gion where the sign ofqi changes, likely appears in th
RAPBC, if the system has a rigid ordered state. From
mathematical point of view, non-negativity of the fre
energy differenceDFR5FRAPBC2FRPBC under the replica
BC has been proven rigorously in any random Ising mode
any finite temperature using the transfer-matrix formali
@25#. This non-negativity holds true irrespectively of a choi
of spins on the surface opposite to]0V. As a result, only the
average of the domain-wall free energy is needed for e
mating a relevant effective coupling of the SG ordering. T
is advantageous for reducing the statistical error ofDFR
from which a transition point from paramagnetic to SG pha
is detected.

An additional merit of the replica boundary condition
that we can discuss the morphology of the domain wall
finite temperatures. In terms of the local overlapqi , the area
of the domain boundary mentioned above is expressed

W5(^ i j &
1
2 (12qiqj ), where the summation is over neares

r
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PRE 60 3609DOMAIN-WALL FREE ENERGY OF SPIN-GLASS . . .
neighboring pairs. Then we can extract directly domain-w
properties such as its fractal dimension, from the differe
DW(T) defined by

DW~T!5
1

2 (̂
i j &

~ ^s is jt it j&RPBC2^s is jt it j&RAPBC!,

~8!

where^¯&RAPBC denotes the thermal average under the r
lica ~anti-! periodic BC. This quantity is also regarded as
difference of link correlation@26# between two boundary
conditions in6J models. The correlation function as well a
the replica overlap have been studied in a similar replica
system@26#, which has a global coupling between the rep
cas. This coupled system is different from the present sys
under RBC. In particular, correlation function~8! is related
to domain-wall properties only in the RBC. The domain-w
areaDW has not been directly studied so far in SG system
except for the zero-temperature calculation in a tw
dimensional Ising SG model@32#. We will present new re-
sults forDW in the next section.

IV. RESULTS

In this section, we present results of an application of
MC method explained in the previous sections to thed
6J Ising SG model. The interactions$Ji j % in Eq. ~7! are
random variables, which take values6J with equal prob-
ability. The boundary-flip MC method can be applied to t
replica BC by regarding the sign of the interactionJint in Eq.
~7! as a dynamical variable. Equivalently these bound
conditions are defined by relative direction of the bound
spinsS1 andS2 added to Eq.~7! whoseJ int are fixed to be
positive. Then, the boundary part in Eq.~1! is given by

HBC~s,t,S1 ,S2!52 (
i P]V

Ji~s iS11t iS2!, ~9!

where the interactionsJi are also distributed randomly. In th
present paper we adopt this method with the boundary sp

The number of replicasM in the EMC method is fixed a
32 irrespectively of the system sizes to utilize the multis
coding technique. Each replica with the parametersa andT
tries to exchange configuration with the nearest replica in
parameter space. As we have explained in Sec. II, we cho
in this two-parameter space, a line on whichM replicas are
prepared. The line chosen is such that the value ofa is unity
below a certain temperatureTm , but it decreases like a
Gaussian formula as a function ofT2Tm aboveTm . The
onsetTm is set to be about two times the critical temperatu
We distribute the set of the parameters to the 32 repl
such that the acceptance ratio for each exchange proces
comes independent of the replicas. This can be succeede
a simple iteration method using the energy function, which
estimated from a short preliminary run. Details of the ite
tion method is explained in the Appendix.

As an equilibration check, we study time evolution
DF R starting from two initial conditions: periodic and ant
periodic boundary conditions imposed for the whole rep
cated systems in the EMC simulation. The initial conditio
for the bulk spins are chosen at random. The free-ene
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differenceDFR is estimated as a function of a MC stept by
averaging over short MC steps around timet. In the case of
the whole antiperiodic BC, free-energy difference, start
from a large negative value at the initial time, evolves towa
equilibrium. The other estimation with the periodic BC at t
initial time reaches the equilibrium value from the oppos
direction to that of the antiperiodic BC. In equilibrium, tw
curves coincide with each other. As expected, we see in
3 that the equilibration ofDFR is obtained after a certain
time. It should be noted that the relaxational function a
proaching the equilibrium value follows an exponential la
rather than a power law observed in the standard SG si
lations. This implies the existence of a typical time scale
equilibration in the present method. We thus expect that
system really reaches equilibrium after a few times of su
time scale. We estimated the time scale for other sizes
determined the MC steps~MCS! for thermalization and mea
surements. For example, in simulations of the 4d case with
L58, we take 9.63104 MCS for the initial step and 2.0
3105 MCS for measurement. We have also checked that
ergodic time@20,18# is about 33102, 3.03104, 5.83104,
and 1.73105 MCS on average forL54, 6, 8, and 10, respec
tively.

We show temperature dependence ofDFR for the 4d
Ising SG model in Fig. 4. The lattice size studied areL
54, 6, 8, and 10 with samples 2197, 2060, 1332, and 8
respectively. According to the standard finite-size-scaling
gument, the domain-wall free energy should be scaled a

DFR~L,T!;F0„~T2Tc!L
1/n
…, ~10!

where the parametern denotes the critical exponent of th
correlation length andF0 is a scaling function. Therefore, th
critical temperature can be located at the point whereDFR
for different sizes as a function ofT cross with each other
The crossing feature ofDFR at Tc is common to the Binder
parameter. In fact, as shown in Fig. 4, crossing ofDFR of
two different sizes is seen at a certain temperature. Howe
the crossing temperature is found to shift systematically

FIG. 3. The domain-wall free energy of the 4d6J Ising SG
model withL58 andT51.694 well below the SG transition tem
perature as a function of MC steps. The upper data marked by o
triangles are started from the periodic boundary condition for
whole system, while the lower one, from the antiperiodic one. E
point at timet is obtained by averaging over 2000 MCS aroundt,
and error bars are estimated from statistical fluctuation over
samples.
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3610 PRE 60KOJI HUKUSHIMA
the low-temperature side as the system size increases, im
ing that correction to the finite-size scaling is significant. W
consider correction due to the leading irrelevant scaling v
able whose scaling dimension isv,

DFR~L,T!;F0„~T2Tc!L
1/n
…1L2vF1„~T2Tc!L

1/n
….
~11!

These exponentsn andv and the critical temperatureTc are
determined by fitting the simulated data to scaling form
~11!, where the scaling functionsF0 andF1 are assumed to
be given by third-order polynomial functions. From the fi
ting, we estimateTc52.00(4), n50.92(6), andv51.5(9).
The finite-size scaling ofF0 after subtraction of the leadin
correction is plotted in Fig. 5, where all the data points
found to collapse almost into a universal function. The sc
ing plot including the smallest sizeL54 is obtained only
when the leading term of the correction is taken into accou
The estimated critical temperature is consistent with the p
vious results obtained by the MC method@27,28# and the
high temperature expansion@29,30#. Our result forn is also
in agreement with these expansion studies, and not very
ferent with that obtained by MC simulations for6J @27# and

FIG. 4. Temperature dependence of the domain-wall free en
for the 4d 6J Ising SG model near the critical temperature. The
lines are for a guide to the eyes.

FIG. 5. Finite-size scaling plot of the domain-wall free energy
the 4d6J Ising SG model. The leading correction to the scaling
taken into account. The scaling plot after subtraction of the lead
correction is shown. The estimated scaling parameters areTc

52.00(4), n50.92(6), and theirrelevant exponentv51.5(9). The
slope of the scaling function is asymptotically close to 0.75(1),
meaning that the stiffness exponentu is 0.82(6).
ly-

i-

a

e
l-

t.
e-

if-

Gaussian distribution@31#. Since the system sizes used in t
present paper are larger than those in the previous MC si
lations, we expect that our estimation is reliable. The irr
evant exponentv is, to our knowledge, the first estimatio
for a 4d Ising SG model by MC simulation, but its value
slightly lower than that obtained from the series expans
@30#, which quoted about 3.

At low enough temperature, the domain-wall free ener
is expected to be scaled as

DFR~L,T!;Lu, ~12!

whereu is an exponent, which gives the characteristic e
ergy scaleLu of low-energy excitations of typical sizeL. We
cannot evaluateDFR at low temperatures enough to distin
guish the low-temperature properties from the critical beh
ior. Here we try to estimate the exponentu from the scaling
function of DFR. We assume that the behavior ofDFR at a
large length scale is also described by the scaling form of
~11! near below Tc . This assumption implies that th
asymptotic behavior of the scaling functionF0 is predicted
as

F0~x!;uxuun, ~13!

at x→2`. We examine this scaling idea in the simple 3d
Ising ferromagnetic model, where the stiffness exponent
incides with the surface dimensionsd21. We estimate the
domain-wall free energy by the present MC method un
the connected spin BC described in Eq.~6!. In the 3d Ising
model, we scale the data to the leading scaling formula~10!
without the correction, because we have not observed a
of the crossing temperature under our numerical accura
The finite-size scaling of the domain-wall free energy wor
well as observed in Fig. 6. The asymptotic behavior of
scaling function givesun;1.27, compatible with the well-
known values ofn andu5d21.

Let us turn to the 4d Ising SG model. The stiffness expo
nent u in SG systems is expected to be much smaller th
that of the ferromagnetic model. The droplet theory predic

gy
e

g

FIG. 6. Finite-size scaling plot of the domain-wall free energy
the 3d ferromagnetic Ising model. The parameters of the scaling
estimated as follows:Tc54.5117(4), n50.624(7). Theasymptotic
behavior of the scaling function follows a power law as a functi
of the scaling parameter (T2Tc)L

1/n with slope 1.27(1). Thevalue
of the slope is compatible with the low-temperature behav
namely,un beingu5d21.
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PRE 60 3611DOMAIN-WALL FREE ENERGY OF SPIN-GLASS . . .
the upper bound ofu to be (d21)/2 @13#. We extract value
of u from the scaling function obtained in Fig. 5. We fit th
scaled data with the scaling variablex larger than 3 to a
power law. The best fit is obtained with the exponentun
50.75(1), which yields the stiffness exponent ofu
50.82(6).

We also investigate the domain-wall areaDW defined by
Eq. ~8! in this model, which is easily calculated in th
present MC scheme. A scaling analysis similar to the one
DFR is performed forDW, taking into account the leadin
correction to the scaling. It is noted that in contrast with t
DFR scaling,DW is proportional toL2/n nearTc because it
has essentially the same scaling dimension as the ene
energy correlation function. The finite-size scaling plot f
DW is shown in Fig. 7, where the critical temperature
used, which is estimated by theDFR scaling. The scaling
works nicely both above and belowTc and the estimatedn
value is consistent with that fromDF R. We suppose that a
low temperature the domain wall in the SG system is rat
rough. Correspondingly, the domain-wall areaDW is ex-
pected to follow a power law on size with a nontrivial fract
dimensionds . We estimateds by extracting the asymptotic
behavior of the scaling function ofDW in the same way as in
the analysis ofDFR. The asymptotic slope of the scalin
function is dsn22. The fractal dimension of this model i
found to be 3.13~2!. According to the Bray-Moore scaling
law @32#, the exponentsu and ds are related to the chao
exponentz,

z5
ds

2
2u. ~14!

By this combined with the values ofu andds obtained here,
our estimation ofz is 0.75~6!. This value is smaller than
those of MC simulations for 4d Ising SG models@33,34#, but
rather close to that by the Migdal-Kadanoff renormalizatio
group analysis@35#.

FIG. 7. Finite-size scaling plot of the domain-wall area in t
4d6J Ising SG model after subtraction of the leading correction
the scaling. The critical temperature is used as a result of the sc
analysis for the domain-wall free energy. The exponentn is found
to be 0.94(2), consistent with the previous estimation. The es
mated irrelevant exponentv51.86(77) agrees with that obtaine
from the DFR scaling. The slope is estimated to be 0.94(2), sug-
gestingds53.13(2).
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V. DISCUSSION AND SUMMARY

We have developed a numerical method, which enable
to estimate a free-energy difference directly from MC sim
lation. It is a boundary-flip MC method, in which the replic
boundary conditions and the exchange MC technique are
corporated. The proposed method works well in the sh
range Ising SG model. This method presented here can
applied to various spin systems including vector spin mod
because our argument does not depend on a model Ha
tonian. It should be noted that the EMC method, as well
other extended ensemble methods, is also applicable to
domly frustrated spin systems, while the cluster-flip-bas
method is restricted in nonfrustrated models. Another ext
sion would be concerned with the choice of the bound
conditions. In this paper, we have described the case for
fixed spin BC, but it is straightforward to extend it to oth
types of BC’s. It is only necessary for boundary conditions
be expressed by a countable variable, while the degre
freedom of the model system is not restricted.

We also discuss boundary conditions for SG systems.
us comment on related studies. A similar coupled-repl
system has been studied analytically by a mean-field va
tional method@36#, where two replicas are coupled with eac
other by fixing the value of overlap between surface spins
these replicas. The system studied roughly corresponds to
present replica boundary model by choosing appropriate
rameters. It is predicted that an excess free energy due to
effective coupling is proportional toLd25/2, which acciden-
tally coincides with the upper limit of the droplet scalin
theory in the four-dimensional case. Our estimation of
stiffness exponent is not compatible to that predicted fr
the variational calculation.

Recently a boundary condition, called the naive bound
condition, has been proposed in 2D Ising@37# andXY @38#
spin-glass models, independently. In these studies, t
minimize energy of a whole system under the free-bound
condition. Using the obtained boundary spin configuration
a reference system, a twisted boundary condition is prepa
by flipping the sign of spins on one surface. The ground-s
energy of such a system is always higher than that of
reference system. They claimed that this non-negativity
evidence of introducing correctly a domain wall into the sy
tem. It is doubtful whether such boundary conditions defin
at zero temperature are also relevant to the ordering at fi
temperatures. This is because many SG systems inclu
both short-range@32# and mean-field models@39# are ex-
pected to exhibit chaotic nature; namely, spin configuratio
at finite temperatures differ from those atT50 in larger
scale than the so-called overlap length. Further, the rep
boundary condition takes an advantage from the naive on
a practical sense, because the former does not need
ground-state calculations. This fact makes our investigati
easier in three- or high-dimensional systems, where
ground states are hardly found for suitable large systems
to NP hardness.

The present method has successfully been applied to
4d6J Ising SG model under the replica boundary con
tions. The average of the domain-wall free energyDFR over
samples, not the variance as used in the standard DW
study, exhibits very clear crossing at the critical temperatu
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implying that it is a good indicator of the SG transition. It
noted that the replica BC is crucial for providing the no
negativity of DFR. We expect that, when the system has
well-defined rigidity in the ordered phase, theDFR analysis
works well even in the case where the Binder parameter d
not show a crossing atTc . In such systems, the short-rang
SG models with the field are one of the most attractive pr
lems in the SG study. As a byproduct of the RBC, we c
argue the domain-wall area in the SG phase. We have
mated the stiffness exponentu and the surface dimensionds
of the domain wall in the 4d Ising SG phase independentl
The latter value lies significantly above the trivial surfa
dimensiond21, meaning that the domain wall is roug
while bothu andds coincide withd21 in the ferromagnetic
Ising models.

Finally we make a comment on distribution ofDFR over
samplesP(DFR), whose typical results are shown in Fig.
To our surprise, the distribution functions of different size
when scaled by their first moment, lie on top of each othe
the SG phase. Another remarkable observation is that
scaling function is approximated by a Gaussian functi
namely, it approaches a nonzero value as its argument
to zero. These results, similar to those observed in 2d and 3d
Ising SG models at zero temperature@24,40#, are consistent
with the droplet picture@12,13#.

The question of whether many equilibrium pure states
ist or not in the SG phase has still remained controvers
For the system of present interest, some MC studies@41,26#
have supported the existence of the multiple pure sta
namely, the mean-field picture, while the Migdal-Kadan
approximation for the short-range SG model@42# has
claimed that the asymptotic size scale to detect the cor
thermodynamic properties is far from those investigated
the MC simulations. As mentioned in Sec. III, the replica B
used in the present paper prefers a self-overlap configura
in the two replicas. Correspondingly, under the replica a
periodic BC, there likely appear such configurations with
domain wall, which lies in one of the two replicas and sep
rates one configuration from its time-reversal one. Theref
our results mentioned above strongly suggest that natur
low-lying excitations within one pure state is as expected
the droplet theory. Our data alone, however, cannot excl

FIG. 8. Scaling plot of the distribution function of the domai
wall free energy withT;1.6. Both axes are scaled by the fir
moment of the distribution. The solid curve is obtained by fitti
the scaling function to a Gaussian formula. The raw data are sh
in the inset.
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the possibility that there are many pure states.
In conclusion, we have proposed a MC method that

ables us to estimate the free-energy difference, and have
cessfully applied it to the 4d6J Ising SG model. Our value
of Tc is in good agreement with the previous results obtain
from the numerical simulations and the series expansio
We have presented estimates of two exponents, the stiff
exponent and the fractal dimension. We have also found
low-lying excitations as expected in the droplet theory a
realized within one pure state in the SG phase, though
cannot rule out the possibility that there exist many pu
states.
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APPENDIX: SETTING TEMPERATURE POINTS
FOR THE EXCHANGE MC METHOD

In this appendix we propose a practical way to determ
temperature set, which is needed in the exchange
method. For simplicity, we consider a procedure for settin
temperature pointbn between two fixed ones,bn21 and
bn11. Our criterion is that acceptance probabilities for t
exchange trial with both neighboring temperatures beco
equal:

~bn212bn!@E~bn21!2E~bn!#5C,

~bn2bn11!@E~bn!2E~bn11!#5C, ~A1!

whereC and bn are unknown constants. A formal solutio
for bn is given by

bn5g~bn!

5
1

E~bn21!2E~bn11!
3@bn21E~bn21!

2bn11E~bn11!2E~bn!~bn212bn11!#. ~A2!

Regardingb85g(b) as a map ofb to b8, we find a fixed
point of period 2 with bn115g(bn21) and bn21
5g(bn11). Therefore, we expect a repulsive fixed point b
tweenbn21 and bn11. A new mapping to obtain the fixed
point is given by

bn~ t11!5 1
2 @bn~ t !1g„bn~ t !…#, ~A3!

where t is the iteration step. This iteration scheme can
extended straightforwardly to the case of multiple tempe
ture points. The whole set of temperature is divided into t
groups with evenn and oddn. Using the iteration scheme
temperature points of the one group are updated with

n
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other group fixed, alternatively. In actual iterations, the i
tial temperature points$bn% are set in a suitable way, fo
example, equidistantb. The energyE(b) at the initial set of
b is roughly estimated by short MC simulation and the e
ergy at any temperature betweenb1 andbM is assumed to be
obtained from the MC data, for example, by interpolati
technique. The convergence of the iteration is rapi
achieved in many systems we have investigated.

From our experiences so far, efficiency of the EM
method is rather insensitive for the choice of temperat
ng
,
1

. B

iz

F.

v.
-

-

y

e

points, when it is applied to systems such as spin glas
with nondiverging specific heat at the phase transition. T
fact that it is not necessary to specify any parameters be
main simulation is, in fact, one of the big advantages of
EMC method against the other extended ensemble meth
such as the multicanonical MC method and simulated te
pering method. Nevertheless, we emphasize that little ef
on preparing the temperature points by pre-MC runs follo
ing the prescription described above ensures the accept
ratio almost independent of temperature and so is quite
ful.
. J.

. A
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